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Ursell’s edge waves are derived systematically using a new method. Computed profiles
are then compared with the lesser known shoreline singular waves first constructed by
Roseau (1958). A recent method of writing the continuous spectrum solutions on a
plane beach is thereby extended to the discrete spectrum to enable the reconstruction
of both types of edge waves so that, in particular, the unbounded wave profiles are
more easily computed. The existence of stagnation points on the bed for standing
edge waves is considered and demonstrated for the first few modes. A ramification
of this is the existence of (two-dimensional-cross-shore) dividing ‘streamlines’ from
the bed to the surface also, the number of which appears to equate to the modal
number of the edge wave. These dividing streamlines, along with other streamlines,
are computed for the first few modes of both the Ursell and the (alternative) singular
waves constructed by Roseau.

It follows that these waves can also exist in the presence of solid cylinders bounded
by fixed streamlines and, in particular therefore, that the hitherto unbounded Roseau
waves can exist in a bounded state since a region including the origin can be removed
from the flow by exploiting a dividing streamline. It is confirmed that the wavenumbers
of the Roseau waves interlace those of the Ursell waves. An examination of available
evidence leaves open to further research the question of whether the alternative
Roseau waves have been ‘inadvertently’ observed either in the laboratory or, by
means of contamination of data, in the field. Further laboratory simulations using
longshore solid cylinders as ‘wave guides’ are proposed.

1. Introduction
The theory of bounded edge waves on a plane beach is well established. In his

seminal work, Ursell (1952) writes the complete set of bounded edge wave solutions
possible on an infinite plane beach within the framework of a linear inviscid theory
and presents experimental laboratory evidence of the existence both of modes at
cut-off (the supremum in the continuous spectrum of the wavenumber) and the edge
wave modes which increase in number as the beach angle α is decreased. Further
evidence of existence has been given by, amongst others, Guza & Bowen (1976) from
laboratory experiments and by Oltman-Shay & Guza (1987) from field tests. The
latter work describes evidence of several modes on two different beaches of typical
slopes 0.06 and 0.02. The inviscid theory of Ursell, having established the relationship
ω2 = gk sin (2n + 1)α between angular frequency ω and wavenumber k, shows that
the number n of modes possible is always the integer part of 1

2
+ (π/4α). Whilst most

of the results presented by Oltman-Shay & Guza point to significant peaks at modes
0 and 1, there are substantial observations of energetics at higher modes particularly
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for the higher frequency oscillations. Moreover, in one experiment in particular (figure
13 therein), there is a fairly uniform spread of power across the wavelengths between
modes 0 and 2 for frequencies in the range 0.033–0.05 Hz. This particular observation
is not discussed.

Ursell refers to the work of Peters (1952) for a complete discussion of the continuous
spectrum solutions although the first writer to develop such three-dimensional solu-
tions was Roseau (1951). The non-referencing by both Ursell and Peters of this earlier
work is easier to understand than is the failure of Roseau (1958) to acknowledge
the work of Ursell, since the 1958 work essentially rederives the edge waves already
discovered. Whitham (1979) later remarked however that Ursell had indeed written
the solutions but had not divulged to his readers the method of discovery. However,
in his conclusions, Ursell states his obligation to Dr C. Eckart for discussions leading
to the discovery of the critical angles where new modes appear.

The presentation by Roseau (1958) of the bounded edge waves is somewhat different
to Ursell’s and the intrinsic results are hard to extrapolate from the rigorous and
extensive work in proving the various solutions. However, the reader wishing to
relate directly to Ursell’s edge waves can find a full expression in Roseau (1958, p.
458), the first mode of which is given as a special case (Stokes wave) on p. 463.
Moreover, as Roseau saw his work (1958) as a natural extension to k > ω2/g
having earlier studied the continuous spectrum k < ω2/g (1951), it was natural for
him to include the weakly unbounded solutions which, in the latter case certainly,
were required for the satisfactory construction of incoming progressing waves. In
fact, Roseau also discussed strongly unbounded solutions but these will not be
required for the purposes of the present investigation although some of the salient
points of the conclusions herein might, in due course, be shown also to apply
to these.

Other significant contributions to the theory of edge waves include Whitham (1976),
Minzoni (1976), Minzoni & Whitham (1977), Evans (1988, 1989), Miles (1990a) and
Blondeaux & Vittori (1995). Of these, both Whitham and Minzoni demonstrated non-
uniformity at large distances of the shallow-water-approximation edge waves whilst
Minzoni & Whitham later considered the excitation of subharmonic edge waves
by weakly nonlinear interaction with a classical bounded standing wave normally
incident to the shore line (they stated that their methods might also be extended to
the case of oblique incidence) and simultaneously showed that the non-uniformity
was mild and could be removed by coordinate straining. More recently Blondeaux &
Vittori (1995) extended the weak nonlinear theory to discuss the excitation (by the
same two-dimensional classical bounded standing wave aφ00) of synchronous edge
waves, also through interaction with subharmonic edge waves. Of the various two-
parameter interactions considered by them, the interaction of aφ00 with itself was not
discussed but this has since been the subject of a separate investigation by Body &
Ehrenmark (1999). Meanwhile, Evans, within the framework of a linear theory, had
discussed alternative generation mechanisms by considering bottom protrusions and
surface pressure disturbances. A recent survey of edge wave work is given by Evans
& Kuznetsov (1997).

Most authors (e.g. Whitham 1979; Minzoni & Whitham 1977; Blondeaux &
Vittori 1995) reject the inclusion of the weakly singular standing wave, both for
the continuous spectrum solutions and for edge wave discussions. This neglect is
more harmful in the former case, since it is impossible to construct progressing
waves without it. One may ask whether, in the interests of securing a physically
meaningful result very near the shoreline where the linear inviscid theory has long
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since lost its validity, it is worth sacrificing the fundamentally observed nature of non-
breaking incident waves on a beach, namely their dominantly progressive state. Miles
(1990b) enriches this debate with a shallow-water-expansion matching model where
an incoming arbitrary wave is gradually converted to be dominated by standing
wave behaviour near the shore line thus enabling the field there to be described
through a bounded function by including both viscous and capillary effects. There
are numerical limitations to Miles’ results (see Ehrenmark 1996) but no doubt a more
general viscous model (were this to be possible) would secure the comprehensive
conclusion that Miles’ interpretation is essentially correct and the far-field flow must,
in general, include a term which is at least logarithmically singular at the shore line.
This is the view adopted in the present work which is mainly, although not exclusively,
focused on computations of the ‘weakly singular edge waves’.

The outline of the present work is that, following the brief formulation of general
solutions in the next section, the regular (Ursell) and singular (Roseau) edge waves
are reconstructed respectively in §§ 3 and 4 by a method developed recently for
the continuous spectrum solutions (Ehrenmark 1998, referred to as EH1 hereafter).
Following this, Roseau modes are now readily computed and, in particular, a near-
field expansion is given which may be used on any desk-top computer. The occurrence
of stagnation points on the bed are discussed in connection with dividing streamlines
in § 5 and computation procedures are outlined. One of the chief results, that Roseau
edge wave modes can exist in a bounded state in the presence of solid longshore
orientated cylindrical ‘guides’, is discussed numerically for a number of cases and
in § 6 the possible implications of this are discussed in terms of exisiting data. The
conclusion is that further laboratory or field work is required to examine the chances
of the modes being realized experimentally. Some concluding remarks are made in
§ 7.

2. Formulation of solutions
An ansatz for developing three-dimensional solutions to the classical beach problem,

in terms of the inverse Kontorovich–Lebedev transform (K–L), is described in full
detail in EH1. The main advantages of this method are two-fold. On the one hand
there is readily available a nearshore asymptotic expansion which can be used to great
accuracy over many wavelengths from the shore line whilst, at the same time, the full
expansion permits now established methods for the numerical inversion of K–L to
be used to enable reasonably easy computation of the solutions at all distances and
all depths regardless of incidence angle. The only restriction with the ansatz is that,
for waves below cut-off mode (i.e. continuous spectrum), beach angles are restricted
to rational multiples of π of the form (2p+ 1)/2q; p, q ∈ N . For more general beach
angles, the solution first given by Roseau (1952) or Peters (1952) would need to be
adopted.

The geometry is defined with the z-axis being taken along the shoreline, x directed
out to sea and y taken vertically upwards with y = 0 as the still water level (SWL).
Monochromatic waves of angular frequency ω (here regarded as fixed)† and potential

† Many works take wavenumber fixed and develop instead a spectrum in ω whence its discreet
part will then be below the continuous part . We follow Roseau (1958) who thought of the waves as
‘short waves’ at fixed frequency rather than low-frequency waves at fixed wavelength (infragravity
waves).
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‘amplitude’ a are then described in deep water by the potential function

Φ∞ = aRe {φ∞ exp (iωt)},
where

φ∞ = exp {i(nx+ kz) }emy
and where the angle of departure γ from incidence along a line of greatest slope is
given by cos γ = n/m, sin γ = k/m. From the Laplace equation it follows that

n2 + k2 = m2. (2.1)

Non-dimensional variables are taken based on ω and the wavelength at infinity
2π/m, m = ω2/g. The new radial polar coordinate is R = rω2/g, where x = r cos θ,
y = r sin θ and the polar line θ = 0 is the SWL whilst the impermeable bed is
given by θ = −α. The dimensional variables are non-dimensionalized using off-shore
wavenumber and phase speed. Writing Φ = aRe {φ(R, θ) exp (it) eikz}, where g2Φ/ω3

is the dimensioned potential, the system for the dimensionless potential function φ
may be taken in the form

(∆− κ2)φ = 0; {0 < R < ∞, −α < θ < 0}, (2.2)

φθ(R,−α) = 0; {0 < R < ∞}, (2.3)

φθ(R, 0) = Rφ(R, 0); {0 < R < ∞}, (2.4)

Lim
R→∞ {φ− φ∞} = 0; {−α < θ < 0}, (2.5)

Lim
R→0
{φ/ln R} = −λ; {λ constant}. (2.6)

In the above κ = k/m, the suffix θ denotes a partial derivative and it is understood that
the two-dimensional Laplacian ∆ is also dimensionless. Note that for edge waves (k
above cut-off, κ > 1), the value of γ in the above would be complex.

A formal solution of (2.2) which satisfies (2.3) is

φ(R, θ) = λK0(κR) +

∫ ∞
0

A(s) cosh s(θ + α)Kis(κR) ds, (2.7)

where Kν is Macdonald’s function of order ν (Watson 1944) and λ is a suitable con-
stant. It has been shown in EH1 that λ = − 1

2
iπκ sin α χ0 where χ0 is the residue of A(s)

at the simple pole s = −i (if A is regular there, λ = 0). The development of A(s), as the
solution of a second-order functional equation, for the case κ < 1, was given fully in
EH1 and will not be repeated here. It is in fact possible to determine discrete spectrum
(κ > 1) solutions also from the forms given for κ < 1 by systematically eliminating
terms with growing exponentials by restricting slope angles. This procedure is a little
ad hoc however, and it seems prudent, particularly in view of Whitham’s (1979) remark
that a systematic derivation is not found in the literature, to return to the general solu-
tion. Here A(s) is constructed by the use of a discrete Fourier transform (see EH1 for
full details)

A(s) =
Ξ(s)

sinh sα

J∑
j=−J

aj ejsα, (2.8)

where Ξ is i-periodic and J ∈ Z . In the above, the aj satisfy

aj−1

{
eiα(j−1) − 2iκ−1 − e−iα(j−1)

}
= aj+1

{
eiα(j+1) + 2iκ−1 − e−iα(j+1)

}
(2.9)
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and the solvability condition for the basic functional equation is

κ−1 = sin αJ. (2.10)

In view of the structure of (2.9) it is clearly desirable to distinguish between even and
odd J .

3. Ursell’s edge waves
The case J = 2N + 1, N ∈ Z is considered first. It is easy to show from the

recurrence that, for each odd j, aj = −a−j , so that the formula

sinh jsα

sinh sα
=

j∑
r=1

e(j−2r+1)αs

may be used to simplify (2.8) into

A(s) = Ξ(s)

N∑
k=0

a2k+1

{
1 + 2

k∑
j=1

cosh 2jαs

}
, (3.1)

whilst writing

a2k−1 =
c2k−1

sin α(k +N) sin α(k − 1−N)
, (3.2)

simplifies (2.9) into

c2k−1 tan α(k −N) = c2k+1 tan α(k +N). (3.3)

In this case, with the required even parity of A (s), Ξ(s) is taken to be a constant
Ξ0. Other choices would lead to solutions not possessing the required boundedness
properties of Ursell’s edge waves (see EH1 for further details of K–L inversion). Note
also, in (3.1) and elsewhere, that the inner sum is regarded as zero when k = 0.

When (3.1) is rewritten in the form

A(s) = Ξ(s)d1

{
1 + 2

N∑
k=1

d2k+1

d1

cosh 2ksα

}
(see the Appendix) this may be substituted in (2.7) and the K–L inversion carried out
termwise. This gives (with Ξ = Ξ0 ⇒ λ = 0)

φ(R, θ) =
πΞ0d1

2

{
e−κR cos(θ+α) +

N∑
k=1

d2k+1

d1

(
e−κR cos(θ+(2k+1)α) + e−κR cos(θ+(1−2k)α)

)}
which, in view of (2.10) and the result in the Appendix, is identical to the expression
written (but not systematically derived) by Ursell (1952).

4. Roseau’s alternative edge waves
For the case J = 2N, N ∈ Z solutions are found which do not possess the

boundedness property at R = 0. These were first written by Roseau (1958) in a
comprehensive study which discussed in great detail a wide class of solutions to the
problem delineated by the system (2.1)–(2.5). Of that class, interest here is limited to
those solutions consistent with (2.6) and, in view of Roseau’s observations that the
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waves similarly decayed exponentially as x → ∞, these will be denoted ‘alternative
edge waves’ or ‘edge waves of the second kind’.

The concern is now with aj, j even. To this end, note from (2.9) that, for even j,
aj = a−j and, moreover, following an inductive argument similar to the one used for
odd j in the Appendix, that

a0 + 2

N∑
k=1

a2k = 0. (4.1)

Thus it follows from (2.8) that

A(s) =
Ξ(s)

sinh sα

{
a0 + 2

N∑
j=1

a2j cosh 2jsα

}
, (4.2)

where, in view of (4.1), the term in the brace will have a double zero at s = 0. It will
now be necessary to adopt odd parity for the i-periodic function Ξ and the choice

Ξ(s) = coth πs (4.3)

satisfies the required conditions: (i) it does not violate asymptotics as s → ∞; (ii) it
introduces no new singularities in the strip 0 < Im(s) < 1; (iii) it will render A(s) with
a simple pole at s = −i and a finite limit as s → 0. These requirements were shown
rigorously in EH1 to be those required for the proof of solution. Moreover, (4.1)
enables the elimination of the divisor in (4.2) which therefore becomes

A(s) = 2Ξ(s)

N∑
j=1

a2j

sinh2jsα

sinh sα
= 2Ξ(s)

N∑
j=1

a2j sinh jsα

j∑
r=1

e(j−2r+1)αs

= 2Ξ(s)

N∑
j=1

a2j

j∑
r=1

sinh(2r − 1)sα = 2Ξ(s)

N∑
r=1

d2r sinh(2r − 1)sα,

where, consistent with the notation in the Appendix,

d2k =

N∑
j=k

a2k.

The potential of the ‘second kind’ edge waves is therefore given by

φ(R, θ) = λK0(κR) + 2d2

N∑
m=1

Bm,N

∫ ∞
0

coth πs sinh(2m− 1)sα

×cosh s(θ + α)Kis(κR) ds, (4.4)

where, to be consistent with Ursell’s type of notation,

Bm,N = (−)m−1

m−1∏
r=1

tan α(N − r)
tan α(N + r)

; B1,N = 1, (4.5)

from the final results in the Appendix. Note that (2.10) is now equivalent to the
dimensional frequency relation

σ2 = gk sin 2Nα (4.6)

thus giving a discrete spectrum of wavenumbers interlacing those of Ursell’s edge
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waves which were given by

σ2 = gk sin (2N + 1) α. (4.7)

In (4.4) λ is given by

λ = −iπκ sin α Ress=−i

{
d2

N∑
m=1

Bm,N coth πs sinh(2m− 1)sα

}

= −κ d2 sin α

N∑
m=1

Bm,N sin(2m− 1)α. (4.8)

There are two fundamental ways of facilitating computation of (4.4). One is to
determine the (exponential) far-field asymptotics of the K–L inversion leaving only a
‘remainder’ term to be computed. The other is to construct a uniformly convergent
near-field expansion by conventional use of the residue theorem. Both methods were
fully discussed and proved in EH1 and only the results will be given here. The
near-field expansion is considered first. It is convenient to set the arbitrary constant
d2 = 1.

With the abbreviation ϑm = (2m− 1)α, this expansion may be written

φ = log

(
κR

2

) ∞∑
ρ=0

Aρ

(
κR

2

)ρ
−

∞∑
ρ=0

Cρ

(
κR

2

)ρ
, (4.9)

where

Aρ =

N∑
m=1

Bm,N

[ρ/2]∑
j=0

1

j!

em, ρ−2j

(ρ− j)! ,

Cρ =

N∑
m=1

Bm,N

[ρ/2]∑
j=0

1

j!

{em, ρ−2j ψ(ρ− j + 1)− (−)ρµρ−2jΘm(ρ− 2j)}
(ρ− j)!

having set em, 0 = κ sin α sin ϑm; em, k = (−)kµk sin kϑm cos k(θ + α), k > 0. In the
above, ψ is the usual digamma function and µk = 1 if k = 0, µk = 2 otherwise.
Additionally,

Θm(k) = ϑm cos kϑm cos k(θ + α)− (θ + α)sin kϑm sin k(θ + α)

for convenience.
To understand the limitations of (4.9) it is only necessary to consider the analogy

with the Ursell waves, where a similar procedure would yield an expansion which is
equivalent to writing the Maclaurin series of each exponential function of the Ursell
modes and changing orders of summation. This series will be uniformly convergent
but will require an inordinately large number of terms for computational accuracy
when κR is large. In the continuous spectrum case, the author has noted (EH1) that
six-digit accuracy in the solution could be maintained with 72 terms of the series as
far as R = 15. Here however, the larger values of κ more severely limit its use and for
shallower beaches (say α < π/10) it is impractical to use the formula beyond R = 10.
‘Desk-top’ computations (avoiding full numerical quadrature of (4.4) with the help
of a NAG routine and methods discussed by Ehrenmark 1995) therefore require a
combination of the near- and far-field expansions.
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For the far-field expansion, it follows, after rearranging (4.4) and inverting
suitably, that

φ = λK0(κR) +
π

2

N∑
m=1

Bm,N{e−κR cos(2(m−1)α−θ) + e−κR cos(2mα+θ)}

+ 2

N∑
m=1

Bm,N

∫ ∞
0

sinh[(2m− 1)α− π]s

sinh πs
cosh s(θ + α)Kis(κR) ds. (4.10)

The integrand in the ‘remainder term’ converges at least like exp(−πs/2) and the
inversion is carried out numerically without any difficulty (see Ehrenmark 1995).
Moreover, it was established as a theorem in EH1 that if f(s) ∈ L(0,∞), and if for
some s0, |f(s)| < exp (−λs) for some λ > 0, ∀s > s0 then

F(x) ≡
∫ ∞

0

f(s)Kis(x) ds ∼ e−x
( π

2x

)1/2
∫ ∞

0

f(s)ds. (4.11)

This estimate may be used for κR >> 1 in the last term of (4.10) for m = 2, 3, . . . , N.
If m = 1 a similar result holds if, for some δ > 0, θ 6 −δ. If θ = 0, it follows that∫ ∞

0

sinh(α− π)s

sinh πs
cosh sαKis(κR) ds = −π

2
e−κR + O

(
e−κR

(
1

κR

)1/2
)
.

This facilitates an asymptotic expansion on the surface θ = 0,

2φ/π ∼ −B1,Ne−κR +

N−1∑
j=1

(Bj,N + Bj+1,N)e−κR cos 2jα + BN,Ne−κR cos 2Nα. (4.12)

Note in particular from the above that, for waves at the cut-off frequency, whence
N = π/2α, the exponential decay as x → ∞ is lost, as it is also for the uniformly
bounded edge waves of Ursell. Evans & Kuznetsov (1997, p. 130) define ‘trapped’
waves as those for which a certain energy measure, namely

I ≡
∫
Ω

|∇Φ|2dV +

∫
∂Ω∩F

{
Φ2
}

dS < ∞, (4.13)

is satisfied (here Ω is the body of fluid and F is the free surface). Clearly (4.13)
will be violated by the cut-off modes. Bearing in mind then the formulation of the
oblique incidence problem in the continuous spectrum (Peters 1952; Whitham 1979;
EH1) it seems reasonable to regard the cut-off modes as part of that spectrum thus
representing waves which are incident at 90◦ and that therefore their profile, which
for 0◦ incidence is asymptotically uniform in the longshore direction, is now instead
asymptotically uniform in the cross-shore direction (Ursell 1952).

Moreover, the identification of the continuous spectrum solutions by I = ∞ is
not always helpful. It fails to distinguish the logarithmically singular solutions from
the ones that are bounded there, the latter set of standing waves being attributed
a property of completeness by Minzoni & Whitham (1977), which is evidently not
satisfied by the former group. Furthermore, other classes of unbounded solutions
discussed first by Lehman (1954) and then (for three-dimensional motion) by Roseau
(1958) are known to exist which, it would seem, would not normally be observable
on minimum energy norm arguments.
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Figure 1. (a) Ursell and (b) Roseau edge wave surface profiles on α = π/17, modes N = 0, 3.

5. Computation of profiles and streamlines
Figure 1(a) shows free surface profiles for the first four modes of the bounded Ursell

waves (denoted E1) whilst figure 1(b) displays a similar range of modes for the second-
kind edge waves (denoted E2). The calculations are performed with a beach angle
α = π/(2q+ 1) (in this case) for q = 8. This prevents the occurrence of cut-off modes.
The inner expansion (4.9) has been combined suitably with the asymptotic expression
(4.12) to compute E2. As a check on the accuracy of computations, a useful device
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Figure 2. Cut-off amplitudes computed from (4.9) – note asymptotes BN,N .

is to compute a cut-off mode. For this mode, with 2Nα = π/2, it follows from the
asymptotic relation (4.6) that φ ∼ BN,Nπ/2. This makes it very easy to see from
the numerical output the limit of acceptability of the inner expansion for increasing
values of R and therefore indicates when the number of terms of the expansion has
to be increased or the far-field approximation (4.12) invoked. Results of this are
displayed in figure 2. Note also that each mode E1 is normalized with respect to the
shoreline value whilst modes E2 are normalized with respect to their first peak values
(the rationale for doing this will become evident).

Consider next the determination of dividing streamlines. These emanate from points
on the bed and rise to the surface. Classical two-dimensional stagnation point theory
suggests that the intersection with the bed is orthogonal whilst that with the surface,
in general, will not be. If we write kx ≡ X for convenience, then the X-coordinates of
any stagnation points (here denoting points where stagnation occurs if the longshore
motion is also zero) on the bed, in the case of Ursell’s edge waves, are given by

e−X sccα + 2

N∑
m=1

Am,N cos 2mα e−X cos 2mαsccα = 0 (5.1)

where the Am,N are Ursell’s coefficients (defined herein in the Appendix).
The simplest case N = 1, α 6 π/6, leads to a single bed stagnation point at

x =
cos α

2k sin2α
ln

(
tan 2α

2 tan α cos 2α

)
and for the ‘cut-off’ mode when α = π/6, κR = 2 ln 3. The ‘trajectory’ of this point as
the bed slope angle is decreased is shown in figure 3. For the case N = 2, α 6 π/10,
two stagnation points, which are readily determined numerically, are found on the
bed. The trajectories of these as α decreases are also shown in figure 3 together with
similar trajectories for the stagnation points of the first two Roseau modes. Clearly the
number of stagnation points (and therefore also dividing streamlines) is equal to N.
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Figure 4. Sea-floor potential: Roseau modes 1, 2, 3; α = π/(q + 1).

Note that the physical position will depend on wave frequency so that, for example, a
laboratory E2 Mode 1 wave (E2,1) of typical frequency 1.5 Hz will have its stagnation
point at about 9.5 cm from the shore line on a 30◦ inclination. In the field (see § 6
below) the same mode operating at, say 0.02 Hz on an inclination tan−1 0.025 would
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Figure 5. Dividing lines and other streamlines computed by fourth-order Runge–Kutta
integration: (a) Roseau wave mode 1; (b) Roseau wave mode 2; (c) Ursell wave mode 2 (α = π/17).

exhibit this point at about 21 m from shore, whilst on an inclination tan−1 0.046 the
same feature would be observed at about 40 m.

Figure 4 shows potential distributions on the bed for three E2 cases near cut-off
values. Again, it can be seen that stagnation points exist on the bed, here indicated
by the extrema of the curves shown.

Figure 5(a) shows the computation of the E2,1 dividing streamline (D) for the
case α = π/17. This was obtained from a Runga–Kutta order-4 integration (RK4)
commenced at a very small distance perpendicularly above the seafloor at the stag-
nation point. The method was first tested for numerical robustness by adopting the
approach of Kuznetsov et al. (1998) whereby the streamline determined is ‘retraced’
by an RK4 application started at the first endpoint. Stream lines shoreward and
seaward of D were also computed, the latter being displayed whilst the former are
obscured by the ‘shadow’ of D to demonstrate that the wave E2,1 exists in a bounded
state if this shadow region is made into a solid cylinder. The arc D is nearly cir-
cular; the (non-dimensional) radius shown in figure 5(a) varies monotonically from
0.253766 at the bed to 0.254209 at the free surface. Figures 5(b) and 5(c) display
similar computations for the two dividing streamlines of respectively modes E2,2 and
E1,2. Thus it can be seen that there is very little qualitative difference in behaviour
between the Ursell and the Roseau waves if a small region surrounding the origin
is removed from the flow. Again this can be done physically by making into a solid
the shadow region behind either of the two dividing streamlines. In that case, the
profile of the E2 modes is a maximum at the ‘initial’ point where D intersects the
free surface and it is this similarity with the profile of classical E1 modes maxi-
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Figure 6. Ursell experiment I parameters: surface profiles; bed inclination α = 37.6◦.

mized at the shore line which prompted the normalization referred to earlier for
E2 modes.

Moreover, with the E1 modes also existing in the presence of solid longshore near-
circular cylinders, the number of which possible in a given situation equates to the
mode number, one can argue that E1 and E2 modes are almost self-similar each type
existing with cylinders of alternating radii or, with the scaling R = rω2/g, that the
cylinders are near similar but the frequencies alternate. In fact the numerical evidence
is that, whilst the scaling of cylinders is quite similar, they are by no means identical
although with the radius of the smallest cylinder approaching zero with decreasing bed
slope (at fixed frequency), any discrepancies in shapes of solid cylinders determined
by E1 and E2 will become undetectable – at least within the realms of linearized
theory approximations.

6. Observations from past laboratory and field work
In order to examine, at least qualitatively, the relationship between the present

theory and existing observational evidence, some of the results of four particular
collections of experiments are considered: (i) the laboratory data of Ursell (1952);
(ii) the laboratory data of Guza & Bowen (1976); (iii) the field results at Santa
Barbara published by Oltman-Shay & Guza (1987); (iv) the field results at Torrey
Pines published by Oltman-Shay & Guza (1987).

The laboratory tanks were generally shallow (23 cm (i) and 30 cm (ii)) but long
enough (370 cm (i) and 200 cm (ii)) to eliminate significant cross-shore resonances.
It is also stressed that long-shore wavenumbers (κ) were restricted by cross-shore
boundaries. In (i) these were further complicated by a secondary arrangement of
vertical walls also inducing a resonant frequency at the cut-off value measured in a
wider communicating canal of uniform depth. The results of the paper are therefore
not really applicable to the present simplistic model of an infinite plane beach;
nevertheless the scarcity of data makes at least a cursory examination of the results
tempting. Similarly the results of (ii) will be considered only fleetingly and attention
instead concentrated on more careful examination of the field results (iii) and (iv).
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In each case (i–iv) there are specific measures of the beach slope αk,i (which, of
course, for (iii) and (iv) are only average values). Those in (i) are 37.6◦ and 29.5◦
and, for the range of frequencies considered, the first value supports (on an infinite
plane beach) only mode 0 (Stokes’ wave) of the Ursell modes, whilst the second value
supports also a mode 1 wave. Both values support only the fundamental mode 1
Roseau wave (E2,1). In his discussion of experiment I, Ursell (1952) refers to the
sensitivity of measurements in relation to the placement of the response measuring
device. This is because of the standing nature of the cross-shore oscillations. The
modes referred to are shown here in figure 6 although of course the relative amplitudes
are indeterminate. Figure 2 of Ursell (1952) shows observation of the mode 0 Stokes
edge wave (123 c min−1) beyond question. The second peak shown is attributed
to a resonance with the cut-off mode in the lower end of the canal, expected at
157 c min−1 but actually appearing at about 163 c min−1. The positioning of the
optical plane reading the response is deemed to be critical and it is remarked how
(in a third experiment) abnormally low amplitudes at 140 c min−1 are attributed to a
repositioning.

Interest here would be in assessing if there is any evidence of the E2,1 wave present
in the data exhibited by Ursell. By (4.6) this wave would be oscillating at the frequency

ω/2π = (g sin 75.2◦/4πb1)
1/2 ≈ 155 c min−1. (Here b1=11.4 cm denotes the width of

the canal.) The frequency value is therefore so close to the cut-off mode (157 c min−1)
as to make any proper assessment impossible. It might conceivably be argued that, if
there is ‘contamination of the data’ by the R1 wave then this could be partly respon-
sible for the widening of the peak bandwith to the left of the experimental peak. This
asymmetry was attributed by Ursell purely to the positioning of measuring equipment
which was evidently extremely close to the beach line (presumably only centimetres
away) to capture optically the maximum slope of the Stokes edge wave. It would
therefore also (see figure 6a) not be in a region of maximum influence of an E2,1
wave, as always on the assumption that viscosity would attenuate the (logarithmically)
large values occurring within a few centimetres of the shoreline.

Guza & Bowen (1976), investigating nonlinear interaction amongst edge waves,
also report laboratory results which could have been of interest. Unfortunately, here
again, the tank dimensions chosen were such as to make the frequency (≈ 1.72 Hz)
of the observed second resonance, denoted (2, 0) in their notation, very close to the
theoretical frequency (≈ 1.68 Hz) of an E2, 1 wave under the same tank parameters.

Two significant field studies have been examined in the context of edge waves
by Oltman-Shay & Guza (1987). At the Santa Barbara site the beach slope varies
considerably between a steep ‘centre section’ of 0.06 with less-steep sections seaward
(0.01) and shoreward (0.045). The second site, at Torrey Pines, San Diego, was reported
to have a more uniform beach slope, approximately 0.025. The sensor arrays were
arranged in the surf zone and parallel to the foreshore respectively at about 26 m
and 66 m from the mean shore line. In order to graph qualitatively the theoretically
predicted edge wave modes, the Santa Barbara beach is assumed to have a gradient
0.046 (ridge value given by authors). The number of Ursell modes supported on a
plane beach of this gradient is 17 whilst the number for the Torrey Pines beach slope
is 31. The two primary-mode Ursell and Roseau relative wave height response curves
for the two simulations are shown in figures 7(a) and 7(b) respectively.

The identification, in the previous section, of the dividing streamline D for the
E2,1 wave allows us to speculate that (in view of the exponentially decaying profile
beyond D) the maximum impact on longshore motion of any ‘E2 contamination’
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would be close to the location of D. The impact on cross-shore motion will however
be maximized further seaward (see figure 6b). This follows because the behaviour of
E2 waves beyond D is similar to E1 waves if one were to regard D as an ‘imaginary
origin’ for E2 waves. Perhaps the most striking observation of energetics observed
between Ursell modes 0 and 1 (thus appropriate to Roseau mode 1) is found in figure
13 of Oltman-Shay & Guza (1987) which reports occurrence of this at between 0.03
and 0.04 Hz for the longshore current on the Santa Barbara beach. With the wave
sensors at 26 m and the slope 0.046, the equivalent range of κR is 1.10 6 κR 6 1.97.
The asymptotic location of D for all small slope angles is just less than 0.7. The
sensors are therefore just within range of a significant E2 signal (see figure 6c) at
least at the lower end of the frequency range as also noted by Oltman-Shay & Guza
(1987) (figure 12) to reveal the frequency dependence of response (at fixed locations)
of the first three Ursell modes.

7. Summary

The presentation of a new method to solve the classical linearized beach problem
over the discrete spectrum has enabled the construction of a simple computational
framework from which the unbounded edge wave solutions of Roseau (1958) can be
studied in detail. In particular a near-field expansion has proved to be of great value
to the desk-top user and all computations of these waves presented in this work were
evaluated in this way.

One of the main results of the paper is the demonstration that a (two-dimensional
cross-shore) dividing field line exists, for all modes of the Roseau waves. This permits
the waves to exist in a uniformly bounded state in the presence of a solid cylinder,
placed at the shoreline, whose generators coincide with the shadow region of the
dividing streamline. Moreover, for the Nth mode, N such streamlines exist giving a
variety of possible cylindrical ‘exterior wave guides’ to support the propagation of
new beach edge waves. As the profile of the cylinders is almost circular they provide
an effect akin to that of an overhanging cliff. Similar situations can be constructed
for the Ursell waves (and – although probably with less physical interest – for the
classical continuous spectrum two-dimensional standing wave solutions). The radii of
the cylinders depend on beach gradient and on the frequency of the waves propagated
but, for laboratory waves of O(1) Hz the radius of the smallest cylinder is only a few
centimetres on a gradient of about 1:3. This should make practical a laboratory test
in a large three-dimensional wave facility to evaluate whether or not the new waves
can actually be observed. Study of some available evidence from both the field and
the laboratory has failed to yield any significant conclusions.

Finally, it is argued that, with infinite plane beaches unlikely in practice and with
the radius of the solid cylinder required to support bounded Roseau wave modes
becoming very small as beach slope approaches zero, the likelihood is that a plane
beach with such a solid cylinder is not necessarily less representative in linear theory
than the infinite plane beach. It is therefore suggested that Roseau modes could be
observed in the field but that the cross-shore observation points have to be chosen
carefully.

The author is indebted to the Leverhulme Trust for funding under grant No.
F/405/B.
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Appendix.
For the case J = 2N + 1, the recurrence relation (2.9) may be rewritten

a2k−1 cos α(k +N) sin α(k −N − 1) = a2k+1 cos α(k −N) sin α(k +N + 1)

from which can be written the general solution

a2m+1

a1

= − sin αN sin α(N + 1)

sin α(m+N + 1) sin α(m−N)

m∏
r=1

tan α(r −N)

tan α(r +N)
.

The double summation in (3.1) is now expressed in the form

A(s) = Ξ(s)

{
d1 + 2

N∑
k=1

d2k+1 cosh 2ksα

}
so that,

d2N+1 = a2N+1, d2N−1 = d2N+1 + a2N−1, . . . , d2(N−j)+1 = d2(N−j)+3 + a2(N−j)+1, . . . .

Now note that

d2N−1 = a2N+1

(
1 +

sin α(2N + 1)

cos 2αN sin α

)
= −a2N+1

tan 2Nα

tan α

and that, similarly,

d2N−3 = a2N+1

tan 2Nα tan(2N − 1)α

tan α tan 2α
.

It will be established, by induction, that

d2(N−j)+1 = (−)ja2N+1

tan 2Nα tan (2N − 1)α . . . tan (2N − j + 1)α

tan α tan 2α . . . tan jα
.

The hypothesis is true for j = 1 , j = 2. Assume that it is true for j − 1. Then

d2(N−j)+1 = d2(N−j)+3 + a2(N−j)+1

= (−)j−1a2N+1

tan 2Nα . . . tan(2N − j + 2)α

tan α . . . tan (j − 1)α
+ a2(N−j)+1

= (−)j−1a2N+1

tan 2Nα . . . tan(2N − j + 2)α

tan α . . . tan (j − 1)α

×
{

1− sin(2N + 1)α

cos(2N + 1− j)α sin jα

}
= (−)ja2N+1

tan 2Nα . . . tan(2N − j + 1)α

tan α . . . tan jα
.

Finally, write

d2m+1

d1

= (−)m

m∏
r=1

tan (N − m+ r)α

m∏
r=1

tan (N + r)α

so that the coefficients Am,ndefined by Ursell (1952) are recovered here by

Am,N =
d2m+1

d1

.
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In the case where instead J = 2N, similarly

a2m

a0

=
− cos αN sin αN

cos α(m+N) sin α(m−N)

m∏
r=1

tan α(r −N)

tan α(r +N)

and

d2m

d2

= (−)m−1

m−1∏
r=1

tan α(N − r)
tan α(N + r)

; m = 2, 3, 4 . . . .
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